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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHEICLY, MEAMORAFDU.: NO., 1105

PLARE AND THREE-DIMENSIONAL FLON AT
HIGH SUBSONIC SPEEDS#
(Extension of the Prandtl Rule)

3y B. Gothert, Berlin-Adlershof

Abstract: For two- and three-dimensional flow in a
compreszible medium, & simple relation 1s gsiven by which,
to a first apnroximation, the quantitatlive Influence of
compressibllity upon the velocltles and pressures can be
understood in 2 cle&r manner. Tn tie appllication of this
relution the distinct behaviors of two~dimenslonal and
exlally symmetric three-dimensional flow with increasing
Mach number are brought out. For slender elliptile
cylinders &nd e€llinscids of revolution, calculatlons are
made of the critical Mach numbir; that 1s, the Much
numiser at whicn local sonle velcelty 1s achleved on the
bedy. As & further exsmple, the liiting wing of finite
span 18 consldered, and 1t 1s shown that the increase of
wlng 11ft with Mech number at a given angle of attack 1s
greatly derendent upon the aspect ratio be/F,

OUTLIHE
I. Approximate Equation for Compressible Flow (Prandtl
Rule)
IT. Distortion of the Perturbation Potentlal and the
Streamline Fleld in Equel Sense and in Equal
j Strength (Extension of the Prandtl Rule)
ITITI. Plane and Throe-Dimension&l Flow without Lift

1. Wing of Finlte Thickness without Lift In
Two~Dimenslonal Flow

2. Ax1ally Symmetric Bodies without IAft

#'Ebene und raumliche Stromung bei hohen Unterschall-
goschwlindigkeiten! (Erwelterung der Prandtlschen Regel)
from report 127, Lillenthal Gesellschaft. pp 97 - 101,
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2. Comparison of Two-Dimenslonal &and Axlally:
Symmetric Flow witnout Lift

;. Determination of Critical Free-Stream
Velocity for Two-Dimsnsicnal and
Ixially Syumetric Flow

IV. Vings of Finite Span

V. Svmaary

I. APFROZTIIATE EYUATION FOR COIPRESSTIBLE FLCOY
(FRATDIT RTIE)

If, in a flow vhich has only sa3ll verlations of
velooitv and irclintiion 1rom para'l.l.el f.Lcw, the potential
is scPa:utgd into the potertial &y _of the jarellel
streas wnd the robzntial o of a superlnposed perturbation
flow, then 1t c¢#n hu snown by A dsvelepment glven by
Pra:atl that, tc a 1irst tprroximetiorn, vhe eguation of
conti{r.;ity for compressikle flow assumes the following
form: -

(\3? AS.} \n")

Wy s Q W

=+ < + ° =0 (1)
0x,® (A - x &g )? (A -THMEx 3u.)”

Tiis differanticl aa_v.&tlor Tor compressible flow can
be simply transforied fornally into the known equatlon for
Incov.preceidle flow 1f the follewing trencsformetlons of
coordinAates are clloscn:

Ko = X403 "l B TES Te = Ties V1 - M2 z, = g3, (2)

Tnnse trarsfornatleons mein thtt each notential Field
of inzoanrosalibla flcv cian V8 transforasd Into the potential
fisld ol &« comprsossibls flow, wi.lle in the coprossible

112 vhat feollows, the subseript #e' refers to
comprossible flow, &rd the subsciript Mie" 1likewlse to
Incompres:s ihle flov. aurthernorce, )

Vo - Free stream v:locity
ay Sneed ni’ sound

M = fach numnbor
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flow pattern the perturbatlon potentlal 1s the seme as 1In
. the .incompressible flow at the corresponding points
determined Trom equdation (2). In thls transformatlon the
perturbation velocities Avy &and Avz become smaller
at the corresponding points of the compressible flow by

the ratio 1 - M®, while the perturbation velocitiles
Avy, remaln- unchanged.

If a parallel flow with the veloclity v, = v°1°
o -
is now superimposed upon the perturbatlon velocltles
determined in this mammer, the inclination of the stream-
lines will be reduced at the corresponding points-ln the
compressible flow, while the pressures will, to & first
approximation, remain unchanged (on the assumption of
8light deviatlions from parallel flow, the pressures are,
to a first approximation, only a.function of the
perturbation veloecity v_). In the transformation to the
compressible flow the streamline .pattern will, as a result
of the smaller inclinations of streamlines in the com=-
pressible mediun, no longer be ccmpressed according to a
simple rule; that 1s, 1t will be deformed 1n an opposlte
sense from the potential field to a degree not lmmedlately
apparent. )

It now frequently becomes aexceedingly difficult to
determine the new contour in the distorted potentlal field.
Conslder, for example, the very simple case of flow about
a plate of Infinite spen at & sm&ll angle of atteck. If
the potential of the flow about the plate {incompressible)

is distorted in tq%_dingctions of the Y- and . Z-axes .

by the factor 1A/ - w9, the points of the plate, e
together with the positions of the bound vortlces pro- L=
duecing the 1ift, move during the-distortion as 1f the e F

angle of attack of the plate had been increased. On the
other hand, however, the slopes of ‘the streamlines-become

flatter in the ratie v/1 - K>. It is evident that after -.
the distortlon a flow taked place between the bound
vortices, In thls simple case, however, the proper
relationship between the positions of the bound vontlces
and the streamline slopes can be achleved easlly by &
corrusponding intensification of the potential in the
compressible flow. The relationships become--considerably
more difficult, even, for example, in the .case of inclined
flow about a plate of finite span, for which three-
dimenslonal flow results, so that--after -the-potential.- - -
dlstortion the flow becomea quite confusing. -
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IT. DISTORTION OF THE PERTURBATION POTZNTIAL AND THE
STREAMLINE FILLD IN EQUAL SENSE AND IN
EQUAL STREYWGTH (EXTENSION OF THE PRAIDTL RULE)

The difficulties Indicated in the praceding sectlon
can ve in princlple lessened 1f 1t 1s possible to dlstort
the streamline pattern in the same sense and to the same
extent a&s the potentlal field of the perturbation flow.
This aim can in fact he achleved by meoeans of a stratagem.

Equation (1) 1s completely independent of the veloclty
Vo oF the perallel flow upon which the perturbation
potentlel & 1s superimposed; it must only be observed
that the perturbation velocltles remaln small in comparism
wlth the velncity of the parallel flow. It therefore msekes
no difference whecther the veloclty vo1 in the 1lncom~
c

presalible medium is of the same or a diff'erent megnitude
compared with the wvsloclty voc In the compresslble

medium. IFf the fellowlng relationshlp is now chosen
betwecn the velocitles of the parallel strsam 1ln the com-
preéssible and In the inconpressible mediums:

Voc = (1 - K2) x Voi-'

—_—

then 1In corresponding points of the compressible flow the

streamline Inclinatlon bscomes: o P
- — . it s
Av A =12 x Av TR
e . Ve Vie 1 d¥1c
-~ fed x
dx Vo (1 - M2) X v JiTaNE dxy,
¢ c . O1c

that 18, at corrcsponding polnts in the compressible
medium tho streamline inclination 1s lucreased in the

ratio 1//1 - ¥°. The sane relation cen also be found

fcr the z-dlrocitlon. This means, however, that the stream-
lire pettern of the zomprressible flow results slmply from
distortlon of the equivalont 1lacompressible flow 1n the
directions of the y and 2z axes by the factor 1A/ 1 - M=,
The streamline peattern and the perturbetion potential
field are thus actually distortcd in the same way.
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The following relationshlps can be found for the
perturbatlon veloclty A4v, &and hence also for the local
pressure Ap 1n the flow:

Ap AVxe Avxie
—_— "2 =2 x .
5 Vog Yoe (1 =¥%) xvo,,

that 1s, in the compresslble flow the pressure ratlo

Ape . :
575_;_;;:3 and the velocity ratio Avg,/vo, &re larger

by the factor 1/(1 - M®) than at corresponding points of
the equivalent incompressible flow.

From the baslc facts derlved &above, the followlng
slmnle proposlition c&n be demonstrated:

The streamllqe pattern of a coupressible flow to be
calculated can be comparcd with the streamline pattern of
an incoapressible flow which results from contraction
along the y &and z eaxes of the profile contour by the

factor 41 = M® (x-axis in the directlon of the free
stream), In the resulting coupressible flow the

Ap
pressuren -7W—§E——n as well as the perturbation
b/« Vs

velocitles Avyx/v, eare greater in the ratlo 1/(1 - M3)

and the streamline slopes greater in the ratioc 1A/ 1 - M2
than at the corresponding polnts of the equivalent incom=-
pressible flow.

With thls principle, approximate solutions can be
obtalned in all cases of compressible flow, as long &as the
corresponding sclutions for incompressible flow are known.
Thus the problem, mentioned 1n the beginning, of an
Inflnitely broad plate oltced at a small angle of attack,
can be solved In a simple manner, &s well as the flow
about wings of finite span, swept-baeck wings, axlally
symuetric bodles, and the 1like. In this manner, also,
approximate sgolutions &are found gqulte easlly for three-
dimensional flows which are not axially aymmetric, of
which an example will be glven in the followlng sectlon IV,
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III. PLANE AND THREE-DIMENSIONAL FLON WITHOUT LIFT

1. Wing of Finlte Thlckness without Lift 1n
Two-Dimenslional Flow

Veloclty Along the Surface of the Body

If, for the sgke of simpliclty, the wing 1s represented
by an elliptlic cylinder of largs span, then 1t is known
from incompressible flow that the grecatest veloclty Increess
appears at the pousltiorn of maxlmum: thlckness, and has the
magnitude Avpga. /vy = ¢/t.

According to ths rule presented previously the
perturbation valocities produced by a body in incompressible
flow are gruater by the factor 1/(1 - MB§ than_those
for a body in incompressible flov thinner by 1 - 1%,
that 1sa:

Avmax 1 B Vraax \i 1 /d)"
= X - —
Vo 4, L =2 O\ Vo o 1-xs \%

With (cl/t)*'i*c =T -T2 (a/t), there then results for the
greutcst wvxcess veloclty on the vwing In the compressible

flow:
(Avmax\ 1 (d )
= peSE— b4 —
Vo/c vi - N2 \t,

The greatest excess velocltles, and thereflore also
the greatest negative prossurgs ecting on ths wing, there-
Tore correspond in plene flow to the ramiliar Prandtl Rule

with 1A/ = M2, Since the veloclty distribution over the
eirfoll In covnm'ewiole 1low corresronds to that over a
thinner section in incompressible f‘.Low, the curve of
veloecilty distributlion becomes somewhat more full with
Incrcasing Mach numher,
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Velocity Disturbance at & Great Distance from the Airfoll

According to a caleulation carried out in FB 11653,
in incompressible flow the veloclty perturbation Avy/vg

et a great distance from a slenden_ying of 1ar59 span 1s:

e Tem - - ——
_——_—

Av -
x\w .d_ " 'ya X3 X £3
Vo 3 t (ya + x3)3

A Y ‘

According to section II this equation takes the
following form for compressible flow:

-”Av' - M -
(__x. - x(\/i"'.'ﬁa x%)x(l M3) X y&° xcaxta

Vv, 1 - M2 {1-M) x 72 + x,2]

c

The following relationshlp therefore results for the
Incr:zasc of the perturbation veloecity Avx/'v° with

increese of Mach nurber at a ~lven point a great distance
from & "ody:

@rofraly 1 (1-¥) xyP - %P (3 + %7
—— e W == - a
(AVI/VO)io \/1 - Mz 11 - Ea) X yOa + szl yOa 08
IT it 1s now &ssumed thut is small compared with
Yo, that is, 1f a polnt a large a*stance sideways from
the body 1s considered, then accordins to the above equation *
the addlitlonal velocitles und therefore also the pressures
Increase by 1/?1 - Ma)@m that 1s, by the third power of
the Prandtl fector. If, however, Yy, 1s small compared

with x that 1s, for Instance, points far shead or
behind the airfoll ere considered, the sdditional velocitles

and ?ressuras increase by 1/ | - M= that is, only with
the first power of the Prandt factor .

2., Axially Symmetric Bodles without Lift -
Valoclty Distributlion over the Surface of the Body
For ellipsolds of revolution the greatest velocilty
1ncrements, appoarin: at the position of maximum thilckness,

2B, Gotherts Linige Bomerkungen zur Prandtlschen
Regel in %“ezug auf ebene und réumliche Stromung (ohne
Auftreib)., FB 1165,
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are shown In figure 1 for Incompressible flow according
to a calculatlon by Welnlgs.

According to this, the velocity lnecrements no longer
rilse llnearly, as in two-dimensional ilow, but more nearly
follow a ¢uadreatic l&w, For small thickness ratlos the
curve for the veloclty Increment can be represented In an
approximate mamnmer in the followlng way:

-

N AV g
. Smax _ 1 ] 1 \2
el @) * (e

If the gencral rule 1s applled once more according to
section IT, one obtains for the sreatest velocity increment
in compressihle flow:

Av i
(L% o Kl "(gf);r TR

and for the ratlo of the preatest excess velocitles in
compressible and lncompressible flow for exlally symmetric
bodles:

(Avmax/Vo)c =1 + Ln(l - MS)

(AVmax/0) 1, in(d/t)*

For small thickness ratlos, 1t is evident that in
snpite of inereasing Mach numder the greatest veloclty
Incremsnt on €lllosolds of ravolution does not riss. Only
for grsater thickness ratios dues an lncre&ase of the
veloclty increment appoar, which is roughly »roportional
to the square of the thickness ratlo. It must be noted,
hovyover, that in the approxlmate calculation terms of the
ordsr of magnitude of Avg as well &s Avya have been

negslceted, wiich uare llhcwise of the order of nagnitude
of d/I:)3 It shtiould he conse juently realized that the above
apyroxli.nte equetion mu3r be cerrooretsd by sxperlimental

- results, Since ths velocity distrioution over & body of

. revolution corresnonds in compressiule flow to that over a
more slsnder bedy in. incompreasiblo ilow, the velocity

- distribution w1l bocome somewhat fuller with increasing
Laoh numher .

3F, ‘elnig: Vergleich der ebenen und der &achsen-
symmetrlschen Stromung um %wlderstandskorpcr. Schiffbau
1930 5. 15,



NACA TM No. 1105 9

Velocity Disturbance at a Great -Distance from
- - Bodles of Revoluuion

' According to a calculation carried out in FB 1165,
the velocity perturbation Avy/v, at a large dlastance

from & slender body of revolution 1s, in 1ncompressible
Tlow:

Avx -'(E\z ya_zxa xta

X

For the compressible flow it 1s then found once more
froi: the corresponding coanveralon of the equivalent incom-
prPs slble flow that the velocliy dlsturbances at points

e great distance from bodles increase in the following

manner ¢
(8v¢/vo)e _ (1 = 3:%)3c3 - 2403 . (Fo2+ %o 2) s/
= - —
(8vx/vo)1e (1 = ¥P)3c2 + %2 |92 Te? - 2x,°

for polnts & large distence sideweys ifrom the body,
that 1s, ¥, 1large coumpared with x,, the velocity
perturbations ard pressures increase by 1/(1 - ¥2)3/=
that 1s, with the thlrd power ol ths Prandtl factor, just
a8 in plune fleow, For points far ehe&ad of, or fer bhebind,
ths body the veloclity disturbances and pressures remaln
constant In splte of increasing Mach number.

3. Comparison of Two-Dimensional and Axlally-Symmetric
Flow wilthout Lirft

In flgure 2, as. &an ex8mple, 13 shown the increase of

veloclty dus to compressibllity in the plane of symmetry
x =0 for two-dimenslonal and threc-dlmensilonal flow.
It i sean from thls example that iIn the lmnmediate vicinlty
of the body the veloclty incroment in three-dimensilonal
flow 1s increaged only slightly by comprecslibllity, but

» that with incrsase of dlstance Ifrom the body the veloclty
ratlos for plane and three-dimenslonal flow very quickly

approach the common asymptote 1/(1 - M3)3/3,
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A quallitative comparlson with the veloclty lncrements
on bodies 1n inzompressible flow (cf. fig. 1) will serve
to glve an 1lnsight 1Into the distlnctive behavliors of »nlane
and three-dimensional t'low4. If cne imaglnes, for example,
that the effect of compressibllity in the viecinlty of the
body 1s somewhat equivelent to an lncrease in thickness,
since &s a result of the veloclity lncrement the alr expands,
then the character of the rise 1n veloclty increment with
transition to higher lach numbers must correspond somewhat
te that from increase of thickness ratic. It 1s evldent,
in fact, for elliptlc cylinders (two dimensions), that the
veloctty Increment rises 1ln proportion to the thicknoas
ratlo; that therefore slight changes in thickness ratio,
as, for example, also by compressibllity, produce quite
netlceable varlations in veloclty lnerement; thls relatlon
1s independent of thickness ratlo and appears, for example,
even with vanishingly small thickness ratlos. For
ellipsoids of revolution (three dimensions), the velocity
Incroment Incrcases anproximately with the second power
of the thickness ratin, so théat small variations of
thickness, &s, lor example, &lso from compressibility,
produce no discerni»le change in veloclty inecrement for
very slender bodlss. (nly fcr very great thlckness ratlos
are the effects of an Incresse of thickhess ratio Bquél
for 8liiptic cylinders and ellipsoids of revolutions, just
gs Iin compressible flow at & large distance from the hody
the same. vclocit* perturbetions ‘are encountered with plane
agg_phrae-dimensional flow.

. Determination of Critical Free-Stream Velocitles for
Tso-Dimensional and ix1glly Symmetrlc Flow

It 18 known from wind~tunnel experiments that flow
over slender bodles goes smoothly so long as the veloclty
of sownd is not reached or exceoded at any polnt in the
flow field. TIf the frce-stream velocity is ralsed so high
that on the body at the volnt of waximum veloclty lncrease
sonlec velnclty is just reached, the f£flew beglns to
deteriorate more or less raplily. Thls free-stream
veloelty shall accovrdingly be termed the critical free-
strcam valoclty, &nd the corresnending Mach number the
critical Fach number K¥, If the greutsst velocity increment
for incompressible flow Av /V 1s known for a body,

4T thank Prof. Bock, DVL, for the baslc 1ldea of this
comparlson.
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‘the basioc principles of the Prandtl rule presented previ-
ously permit calculation of the critical Mach number for
slender bodies.,

Two-dimenslional flow:

o
A

Avy. _---T"l 2 1 -
= _\/I-Mﬁl—/¥+l+¥+lxu*§-

o

Three-dimensional flow (with 4/t = f E”ic/%q] accord=-
ing to figure 1):

r in (1 - M-:ﬂ):l Avye \/Y -1 2 1
; X = +

! + X -1
- n (d4/4F v, y +1 y +1 M3

For 2lliptic cylinders und ellipsolds of revolution
the critical Mach numbers calculaled from the above equatlons
are shown in figure 3.

From the flmure 1t 1s seen that the three-dimensional
flow uffeords con°1d=rab1y more favorable résults than the - -
plane flow, slince on the one hand for equal thickness N
ratios the maxirmum veloclty lncrement 1s conslderably lower
at M = 0, &and on the other hand upon golng to higher
Mach numbers the veloclty Incroments rise only insignifi-
cantly. For example, &n elliptlic cylinder airfoll at
15-poercent thickness ratlo possesses &according to this a
eritical ach number of M# = 0,78, while an elliptical
fuselage of the seme thickness ratio reaches the critical
reglon only at a dach number of M#* = 0.93.

LY.

Thils result indicates that for aircraft the achieve-“x
ment of' the greatest possible slenderness should be
concontrated 1in particu¢ar upon the wing, since the fuse-
lege and engine nacelles of favorable shape will reach X? -
local sonlc veloclty only at considerably higher velocltles
than correspond to the critlcal specd of the wing.

'
%
—

This result 1s naturally valild only for smooth bodles
wlthout protuberances.
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IV. WING OF FINITE SPAN

If one considers next an ldeallzed wing, represented
by a flut plate of aspect ratlo A = b3/F which moves
at a small anglé of attack a and ach number M, then
thiis nlate has 1n Incompressible flow at the same angle
o' attack the following 1lift coefflclent accordlng to the
liftlng=1ine theoryb:

c dCy, 5.65
L = —= ~
ic 60. a l + 1.8/A X a__,\ ‘-\! "”J‘ ﬁ'-il-

In comoressible flow the nressures and hence also the
11ft coefficlient are greater in the ratlo 1/(1 - A2) then
for an equivalent plate In 1ncompressible flow, whose

span and angle of attack are smaller in the ratio \/I - M3,
that 1s:

1 ':.65 - . A.
0L, = —— VTP x 0 = 22200 g
1=y 1+ 18 . 1.8 + V1 - ¥® x A
V1 - N7 x A,

For trhe fractional incre&se of 11ft coeffilcient with
rlse in ¥ach number ovne finds therefore:

\ . < b g s ov™
i

Cr, _ 1.8 +Ag LA ,
CLiC'. 1-8 + \/l - H_‘zAc PRV

For the limiting case A - » the above eyuation
glves the familiar predlection of the Pranditl rule, that
the 1ift coefrlclents rise 1a the ratlc 1AL = ¥2.

For the 1'miting case of the pleéte wlth very small aspect
ratio A-»0 it 1s found, hovever, that ile 1lift
cocffleclients remnaln constvant desplte lncrcese of Mach
numher.,

S TMuchs, Hopf, Seewald: Aerodynesmik, Bd. 2 (1935)
8. 157, Verlag Springer, Berlin 1935,
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.-...Between these two limiting cases lies a complete inter-
mediate rasglon, which is représented in figure li. - Thus -

for a wing of aspect ratio A = 1 the increase due to \
compressibllity in the 1lift from Mach numbers in the range v

M =0 to 0.} up to a Mach number of M = 0.9 amowmts
to about 35 percent, still only approximately 20 percent
of the value found for 1nfinite aspect ratlo.

For small aspect ratios, to which the linear airfoil
theory 1s no longer applicable, Bollay® has presented
Investigations for lncompressible flow in which, for
example, for a plate of vanlishingly small aSpoct ratio
there results: € = 27 sin2a. TFrom this eqguation it 1s
llkewlise found that the 1ift coeft'lcient is not inereased
by coupressibility, since the angle of attack a of the
equlvalent plate rmst be chosen smaller by the ratlo

- ¥2, while the pressure is subsejuently increased
by 1/(1 - ¥2).

The influence of aspect ratio upon increase of 1lift ™°
coefficlent which was fcund by this method will be of
importance in the stabllity of aireraft. If, for example,
the empennage has & smaller aspect ratio than the wlng,
the &Cr/6a of the wing rlses more rapidly than

the 0oCy/d0a of the tull, so that the airplane becomes

unstable with lncreasing NAach number., If the moment of
the fuselage 1s to be considered in the stabllity of the
eirplane, 1t must be realized that the fuselage moment
remains préactically constant, and a further postponement
ls accordingly to be antlcipated.

V. SUMMARY

l. From the continulty equation for three-dimensional
flow in a compressible medlum the following rule, valid
for slender bodies, is founrd by means of a transformation
siﬁilar to that employod in the lerivation of the Prandtl
rule:

The streamlino pattern of a compressible flow to be
calculated can e cowpéared with the streamline pattern of

6Bollay: A Nonlinear Wing Theory and its Application
to Rectangular Wings of Smell Aspect Ratio. Z.A.M.M.,
Bd. 19 (1939) pp. 21 to 35.

.
)
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an Incompressible flcw which results from contraction
along the, __y and 2 axes of the proflle contour by the
factor Vﬁ - M2 (x-8xis in the direction of the free
streem). In the resulting compressible flow the pressures

—p a3 well as the perturbation velocities Av_/v
p/2><v° x/ Vo
are rreater in the ratio 1/(1 = M3) and the streamline
slopes greater in the ratio 1AM - ¥2 than those at the
corresyonding polnts of the equivalent inccmpressible
flov.

2. It 1s shown for slender bodles In two-
dimensionel flow the veloeciby ratios Avy/v, and the

pressure ratios —-—P____ along the surfsce of the body
p/2 x v *

Increese with increfslng Ireo-stream veloclty by the

ratio 1/A/1 - M2, while for axially symmetric flow these
ratios remaln constant In spite of increasing Mach number.

3. At a preat distcnee to one side of the body
(x = 0) the perturbation veloclties Av, and the

pressures lnecrease to the same degree in both two- and
three-dimensloral flow ir the retio 1/(1 - M3)%?®, At
a8 great distance aheed of &nd hehind the body the veloclty

Av, &nd pressure rise In the ratio l/bim:_ﬁﬁ in two-

dimensional {'low, but remeln constant in threve-dimensional
flow,

. For elllntic cylinders and ellipsolds of revolutim
the Mach nwabers are culculated for which sonlc velocity
1s just resched locslly on the wody (fig. 3). Accordingly,
for exaurle, &n elliptic cyltnder of O, 15 thickness ratlo
possessces a criticel yach number of O, 7b while an
ellipsold of revolution of sgqual thlckness rallo shiows a
critlcal Fach numher of 0.93.

5. It is demonstrated tre 11ft coefflcient of airfolls

rises according to the Prandil rmle with 1A/A - M° only
with Infinltely lrrge asrect ratlo; for finlte aspect ratio
the increese is somewhat smaller, until in the limiting
caze of vanlshincly small aspect ratio it completely dils-
appears, that 1s, for A— 0 an increase of Mach number
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at constant -angle .of attack produces no 1lncrease 1n 1lift
coefficient, Thls influence of asnect ratlo 1s presented
in & graph (fig. l).

Translation by Mlilton Van Dyke
National Advlsory Commjttee
for Aeronautics -
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Fig. 1 Maximum super-stream velocity for elliptical cylinders
and ellipsoids of revolution.
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Fig, 2 Perturbation velocities for X=0 through a plane and
through rotationally symmetric disposition of source-
depressions in incompressible and compressible flow,
{ Mach number M=0,8 ).

Notation of coordinates:
Perturbation velocity in incompressible flow:

(A v/ Vylic

Perturbation velocity in compressible flow:
{ M=0,8 ) :

(A v/ v, )e
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3 Maximum super-stream velocity and critical Mach number

M* for elliptical cylinders and ellipsoids of revolution
in symmetric flow.
M*= Mach number of the flow velocity at which the
body atteins sonic velocity.
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Fig. 4 The influence of astect ratio uron the increase of the

1lift coefficient at the same angle of attack by increa-
sing the Mach number M



